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AWract. This paper investigates the ability of a single-layer, time-summating neural 
network to associate and store temporal sequences. In particular, the associative learning 
of temporal sequences is reformulated as an equivalent classification task involving static 
pattems. This leads to a generalization of the perceptran learning rule and convergence 
theorem to the case of temporal sequences. Using geometrical arguments based on linear 
separability it is shown how a time-summating network can handle temporal features such 
as ordering and coarticulation effects. Such an ability is a consequence of the fact that the 
time-summating network develops an activity trace consisting of a decaying sum of all 
previous inputs to the network. On the other hand, such an activity trace may also lead to 
an accumulation of errors in the presence of noisy inputs. This motivates a modification 
of the perceptron learning rule involving the introduction of a stability parameter that 
guarantees a certain level of robustness to noise. The performance of the network in the 
presence of random input sequences is then analysed using statistical-mechanical tech- 
niqes. Eisz!!y, !! is ahnwz ha-, with $=E!! modiE%%!c!iofis, the !im~-summating ne?ruork 
can be trained to store and recall complex sequences. 

1. Introduction 

A major limitation of standard feedforward neural networks is that they are not suitable 
for processing temporal sequences, since there is no direct mechanism for correlating 
separate input patterns belonging to the same sequence. There are a number of distinct 
features associated with the processing of temporal sequences that a neural network 
should be able to handle in applications such as speech recognition: (i) the output 
produced by a pattem in a sequence depends on its order within the sequence (temporal 
ordering); (ii) the output produced by a particular pattern in a sequence depends on 
previous or future patterns of that sequence (coarticulotion effects); (iii) an entire 
sequence of pattems is recognized as a single distinct category; and (iv) variations 
occur in the rate of data presentation (time warping). A network should also be able 
to determine when a particular sequence terminates. 

A common approach to many temporal sequence processing tasks is to convert the 
temporal pattern into a spatial one by dividing the sequence into manageable segments 
using a moving window and to temporarily store each sequence segment in a buffer. 
The resulting spatial pattern may then be presented to the network in the usual way 
and learning algorithms such as back-error-propagation applied accordingly [l, 21. In 
signal-processing applications, each input pattern of the sequence could be a shoa-time 
Fourier transform, which has been discretized into a number of frequency bins; the 
associated spatial pattern of the buffer would then be a frequency-time spectrogram. 
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However, there are a number of drawbacks with the buffer method: (i) Each element 
of the buffer is connected to all the units in the subsequent layer so that the number 
of weights increases with the size of the buffer, which may lead to long training times 
due to the poor scaling of learning algorithms; (ii) the buffer must be sufficiently large 
to accommodate the largest possible sequence, which must be known in advance; (iii) 
the buffer converts temporal shifts to spatial ones so that, for example, the representation 
of temporal correlations is obscure, and a misaligned signal in the spatial representation 
may bear little resemblance to the correctly aligned input signal; and (iv) the buffer 
is inefficient if the output response to each pattern of the input sequence is required 
rather than just the final output. 

It would appear that, in spite of these difficulties, the above spatial approach to 
temporal sequence processing is the one used in the auditory system of the brain. That 
is, the inner ear acts as a bank of frequency filters that spatially separates the frequency 
components of the input time series. Such a spatial pattern is preserved by the 
organization of the auditory nerve fibres. If the firing pattern of each of these fibres 
is characterized by an average firing rate then one obtains a frequency-time energy 
spectrogram, which is analogous to that used in the buffer approach. A closer examin- 
ation of the auditory system, however, suggests that there is also a direct coupling 
between the time domain input signal and the firing patterns of the fibres. That is, 
there is information encoded by temporal modulations of the instantaneous firing rates 
of the fibres [3]. (Such temporal encoding, in contrast to average firing rates, is 
insensitive to amplitude fluctuations.) Moreover, it is possible that higher levels of 
auditory processing involve some form of temporal processing. 

The deficiencies of the buffer method suggest that a more flexible representation 
of time is needed. One simple approach is to introduce into the network a layer of so 
called time-summating neurons [4-71; the activation state or local field of each of these 
neurons at the discrete time step f - 1 is delayed and then fed back as input to the 
neuron to determine its activation state at time t. Each neuron thus maintains an 
activity trace consisting of a decaying sum of all previous inputs to that neuron, which 
forms an internal representation of the temporal input sequences. (This activity trace 
is similar in form to the local fields arising from synapses with slow dynamic response 
as considered by Kleinfeld er al [SI). The inclusion of such a layer eliminates the need 
for a buffer and allows the network to operate directly in the time domain. Moreover, 
the back-error-propagation algorithm may be implemented simply and efficiently, since 
the activity traces computed locally hold all information necessary for the back- 
propagation of errors. Such networks have been applied to the classification of speech 
signals [4,5], motion detection [6], and the storage and recall of complex sequences [71. 

In this paper we study perceptron-like learning algorithms for the association and 
storage of temporal sequences in a two-layer, time-summating neural network. The 
network is taken to consist of an input layer of time-summating neurons, each with a 
linear output function, connected to an output layer of standard binary-threshold 
neurons. We first consider the problem of learning sequences of input-output mappings 
in a network with a single ouput neuron (section 2). We reformulate this problem in 
terms of an equivalent classification task that requires the separation of sets of static 
patterns. This allows us to generalize the perceptron learning rule and convergence 
theorem [9 ]  to the case of temporal sequences. We then analyse a number of simple 
examples to illustrate how the presence of activity traces in the input layer enables a 
time-summating network to handle temporal features such as ordering and coarticula- 
tion effects. 

P C Bressloff and J G Taylor 
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Another consequence of these activity traces is that there is a build up of correlations 
between the local fields of the output neuron generated by an input sequence. In 
section 3 we show how this may lead to an accumulation of errors along a sequence 
in the presence of noisy inputs. This motivates a modification of the perceptron-like 
learning algorithm of section 2 involving the introduction of a stability parameter 1) 
that guarantees a certain level of robustness to noise. Such a modification is similar 
to Gardner's generalization of perceptron learning to the problem of storing static 
patterns in attractor networks with finite basins of attraction [lo]. We also discuss 
some results concerning the optimal capacity of a two-layer, time-summating network 
[ I l ,  121. 

Finally, in section 4 we consider the storage and retrieval of temporal sequences 
in a two-layer time-summating network. As shown in [7], such a network can learn to 
store a sequence ( I (O) ,  1(1) ,  . . . , I (R)}  by taking the desired output at time r, r =  
0, . . . , R - 1,  to be the next pattern in the sequence I( r + 1). If the network is successfully 
trained then the sequence may be retrieved by simply seeding the network with I ( 0 )  
and feeding back the resulting output I(1) along a delay so that I(1) is the input at 
the next time step, etc [7]. We analyse this network in terms of a set of independent 
time-summating perceptrons, and then apply the results of previous sections. 

2. Associative learning of temporal sequences 

Consider a two-layer neural network consisting of N time-summating input units, each 
with a linear output function, connected to a single output unit, which is taken to be 
a binary-threshold neuron. Suppose that some input sequence of length R, 
(Z(l), .. ., Z(R)}, is presented to the network, where Z = ( I , ,  .. . , I,.,) is an N- 
component pattern vector that may be analogue or binary valued. The activation state 
y(f) of the j t h  time-summating input neuron at time t along the sequence is given by 

where 5 is the decay-rate (with 5 < 1). It is assumed that the activation states are 
initialized to zero before the presentation of each input sequence. (We shall not address 
here the important question of how a network determines when a sequence ends.) 
Thus, each time-summating neuron maintains a decaying activity trace of previous 
inputs to that neuron. The decay term k,V,(t- l )  in equation (2.1) may be viewed as 
a positive feedback along a delay line of weight k , ;  this should be contrasted with 
models in which the output of the neuron is fed back rather than the activation state. 
The output of the network is given by 

where w, is the weight of the connection from the j th  neuron to the single output 
neuron (see figure 1). h is a fixed threshold and O(x) = 1 if x> 0 and 0 otherwise. The 
input-output relationship of the network is then {l(f); f = 1 , .  . . , R}+ (f(t); t = 
1 , .  . . , RI. 

An interesting issue for associative learning, in the case of temporal sequences, is 
whether one takes the desired output of the network to be a single fixed pattern as in 
'static' networks or a sequence of patterns. The simplest choice is to require a response 
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Figure 1. Two-layer feedfonvard network with an input layer of time-summating neurons. 

only when the entire sequence has been presented, i.e. to specify a desiredf(R). This 
corresponds to a classification task in which the sequence is labelled by the output 
produced after presentation of the whole sequence. Thus, in speech recognition the 
input could he a sequence of phonemes and the output could be the word category 
to which this sequence belongs. On the other hand, for certain applications, especially 
in the area of control, the full output response of the network is needed, e.g. such an 
output could be a sequence of control commands in response to a sequence of sensor 
inputs. Moreover, even in the case of speech recognition, the additional information 
detailing how the response of a network vanes in time may enhance the classification 
process. This is illustrated by Watrous and Shastri [ 5 ] ,  who apply a two-layer time- 
summating network (referred to as a femporalflow model) to the problem of distinguish- 
ing between the words go and no. They define the target function of the single output 
neuron to be the ramp function r ( f )  = 0.5( 1 + l / R )  if the input is go, say, and 1 - r( I )  
if the input is no. In other words, the output is required to vary linearly from an initial 
value of 0.5 to the final value 1.0 or 0.0. (A more effective choice for the target function 
is an exponential function [13].) 

In the case of the network of figure 1, we shall specify the desired output in terms 
of a sequence of binary patterns [U (  l) ,  . . . , u ( R ) } .  Suppose that the network is required 
to learn p input-output mappings { I * ( f ) ;  f = 1 , .  . . , R } +  [u*(f) ,  I = 1 , .  . . R } ,  p = 
1,. . . , p.  We shall reformulate this problem in terms of a classification task to which 
the perceptron learning theorem [9] may be applied. First, define a new set of inputs 
of the form 

i.e. i+(f) is the output of the input layer at time f. Di?de the pR inputs i * ( t ) ,  
p = 1,. . . , p ,  f = 1 , .  . . , R, into two sets F+ and F-  where I*(  f )  E F+ if U*( f )  = 1 and 
ip( I)  E F- otherwise. Learning then reduces to the problem of finding a set of weights 
[w,, j = 1,. . . , N }  such that the sets F+ and F- are separated by a single hyperplane 
in the space of inputs ip( f)-linear separability. In other words, the weights must 
satisfy the pR conditions 

The perceptron convergence theorem [9] for the time-summating network of figure 1 
may be stated as follows. Suppose that the weights are updated cccording to the 
perceptron learning rule. That is, at each iteration choose an input V ( I )  from either 
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F+ or F -  and update the weights according to the rule 

wj + w j + ( u * ( t ) -  e ( w . i e ( t ) - h ) ) i , q t ) .  (2 .5 )  

If there exists a set of weights that satisfy equation (2.4) for some S>O, then the 
perceptron learning rule (2.5) will arrive at a solution of equation (2.4) in a finite 
number of time steps-independent of N. (Note that, in equation (2.S), t acts as an 
index for a particular input of the set Ftu F-;  it does not refer to the iteration step 
of the learning algorithm.) 

The above result implies that a two-layer time-summating neural network can learn 
thesetofmappings{P(t); t=1 ,  ..., R)+(u*(t) ,  t = 1 ,  . . . ,  R } , p = l ,  ..., pprovided 
that the associated classes F+ and F- are linearly separable. We shall illustrate this 
with a simple example for N = 2. Assume for simplicity that k, , k2 = k Define the vectors 

and consider the mappings AB + 10 and BA + 00. This is essentially an ordering 
problem since the pattem A produces the output 1 or 0, depending respectively on 
whether it precedes or proceeds the pattem B. (Thus, it could not be solved by a 
standard perceptron.) Using equation (2.3) we introduce the four vectors 

It is clear that the sets F+ = {A(l)) and F- = (A(2), & I ) ,  &2)} are linearly separable 
(figure 2(a ) )  and, hence, that the network can learn the above mappings. (On the other 
hand, the mappings AB+ 11 and BA+ 00 cannot be linearly separated by a single line 
(figure 2(b)) ,  and a three-layer time-summating network is required.) 

(a) (b) 

Flgvre 2. Example of ( 0 )  separable and ( b )  non-separable sets F' and F- associated with 
the sequencer of input-output mappings defined in the text. Points in F' and F- are 
denoted by 0 and 0, respectively. 

In the previous example we assumed that the input neurons have the same decay 
rate k However, it is clear that the network can solve a wider range of classification 
tasks if the decay rates are allowed to be site-dependent. A simple illustration of this 
is given in figure 3, which describes the sets F+ and F- associated with the mapping 
AAA+ 101 where A' = (11). In figure 3 ( a )  the two sets are not linearly separable since 
kt = k2 = k, whereas in figure 3(b)  k, # k2 are the two sets are now separable. 
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4- 1 l+k t + k 2  

I 
(a) (b) 

F ~ ~ u R  3. Illustration of the use of input neurons with different decay rates, k # k‘, to salve 
a problem which is not linearly separable when k = k’. 

Finally, note that the above approach can also be applied to the problem of temporal 
sequence classification. The network associates each input sequence with a class 
specified by the final output of the network B(I”(R) - h ) .  The network may be trained 
to match its output with the correct class u ” ( R )  using the learning rule (2 .5)  with 
f = R In this example, there is only a single contribution f ” ( R )  to the set F+ U F- 
from each input sequence. 

3. Temporal correlations and the accumulation of errors 

So far we have shown how a time-summating network can solve certain tasks in the 
time domain by storing previous inputs in the form of activity traces within the input 
layer. Another consequence of the activity traces is that temporal correlations are set 
up between the local fields of the output neuron on presentation of an input sequence. 
To illustrate this point, consider sequences of patterns of the form { Y ( l ) ,  . . . , Y ( R ) }  
where Y ( t )  = I ( t ) + l ( t ) ,  I ( ? )  is fixed and l ( t )  is a random pattern vector satisfying 

( m ) = o  ( t ( t ) k ( r ) ) =  YS&,. (3.1) 
Assuming for simplicity that k, = k for all i = 1,. . . , N, the mean and covariance of 
the corresponding local fields V ( r )  =Z:-l k’-’w.Y(s) are given by 

( V ( r ) ) =  k ‘ - ’ w * I ( s ) = w . i ( r )  
1-1 

and 

cov[ V ( r ) ,  V(r ’ ) ]  = y (3.3) 

where 

R-1 

1 k k’ ... 
k l + k 2  k + k 3  ... 
kZ k+k’ l + k Z + k 4  

... ... 
D= 1kR-B \ r -B  , 

or, in component form 

,-1 
(3.46) 
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The R X R temporal correlation matrix D is symmetric, has positive definite eigenvalues 
and unit determinant (see [12]). The inverse matrix D-' has the simpler form 

l + k 2  -k 0 ... 
I + k 2  -k 

D-I= 1 ik - k  l + k 2  ::: !j (3.5a) 

-k 1 

with components 

D,! = [1 +k2(l  - 8,.~)18,,,,- k(S,.,.+l+ &+I,,,). (3.56) 

Hence, although there are no extrinsic correlations between patterns within an 

activation states of the output neuron. Moreover, the variance of V(r), determined by 
the diagonal term D,,, satisfies 

inpiit seq.uei,i-e, ininnsic irmporai comeiaiions do anse 'oeiween sequeni.e of 

1 - k2' 
1 - k 2  

var( V(r)) = yD,, = y= 

where we have set zj w: = i. Therefore, the variance is a monoronicaiiy increasing 
function of r that, for infinitely long sequences, approaches the asymptotic value 
y / (  1 - k2)  as r + 00. For values of the decay rate k - 1 this limiting value is large and 
may lead to an accumulation of errors. For example, assume that N is large so that 
the distribution of activation states { V(1), . . . , V(R)} associated with the random 
sequences { Y(1), . . . , Y(R)} is described by a multivariate Gaussian with mean and 

patterns I ( r )  should be mapped to the outputs u(r)  = *l for r = 1,. . . , R. Then the 
probability that the network produces an incorrect output at time r, on presentation 
of a noisy input sequence { Y(1), . . . , Y(R)}, is 

--.." ;n-.-ar:..a.. -mn-e-:..at..L..a -.." a:-.." I2  1 1  - - A  I 2  '11 Q ..-- ̂.nrhn*+I.~... .rl~-l..:lr 
CU"PII~,I*C g,*cn rc ;qJrbnrr rJ  "J C ~ Y ' l L N L ' "  \J.L, P L I U  ,ad,. uu&+"yc ,..PE ,,IC Y 1 L U C " J " ' ~  

&(I)=  dV(r)B(-V(r)u(r)) exp( -- 1 1 ( ~ ( s ) - ( V ( ~ ) ) ) D ~ ~ ( V ( ~ ' ) - ( V ( s ~ ) ) ) )  I 27 *.,' 

(3.7) 

(3.8) 

and we have switched to  the spin output functionf(r) =sign( V(r) - h )  for convenience. 
Equation (3.6) implies that the scale factor 1 / m  in equation (3.7) could lead to an 
accumulation of errors along a sequence when k- 1, nb. H ( x )  is a monotonically 
decreasing function of x. One cannot avoid this problem by taking kcc 1, since, in 
order to disambiguate long sequences, it is necessary to have k as close to unity as 
possible. That is, to capture relationships between patterns of a sequence of length R, 
kR should not be too small. A reasonable condition might be kR BO.], which implies 
that llog k( <log 10/R -0  for large R. 

As it stands, the above network is not robust to noisy inputs when trained on 
noise-free pattern sequences using the learning rule (2.5). For if the network has 
successfully learned the mapping { I ( ] ) ,  . . . , I(R)I+{u(l), . . . , u ( R ) }  then equation 
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(2.5) only ensures that x ( r ) = u ( r ) w . f ( r ) > Q  we have set the threshold h = O  for 
convenience. In particular, x ( r )  may be sufficiently small such that, on presentation 
of a noisy sequence {Y(l) ,  ... , Y ( R ) } ,  the probability of an error satisfies E ( r ) =  
H ( x ( r ) / a )  = H ( 0 )  =$. Moreover, this feature is reinforced for long sequences 
when k 1 ,  since the scale factor a considerably reduces the effective size of x( r ) .  
(For a more detailed analysis of ~ ( r ) ,  based upon the statistical-mechanical techniques 
of Gardner [lo], see [14]). Therefore, to ensure a certain level of robustness to noise 
we introduce a stability parameter q. q > 0 and require that 

P C Bressloff and J G Taylor 

(3.9) 

Then & ( I )  satisfies & ( r ) < I f ( q / m ) ,  and it is now possible to reduce the upper 
bound for the probability of error by increasing q. (However, as in the case of static 
inputs, the number of pattems that may be learned without error decreases as q 
increases (see below and [12]).) 

Equation (3.9) is similar in form to the fixed-point equation for the storage of a 
static pattern in an attractor network, with q guaranteeing a finite size for the basins 
of attraction [ 101. As in [ 101, it is necessary to modify the perceptron-like leaming 
algorithm (2.5) when q > 0. Suppose that the network is required to learn p mappings 
of the form {1*(1) ,..., I p ( R ) } + ( u * ( l )  ,..., d ' (R) } ,  p = l ,  ..., p.  We introduce a 
mask of the form 

E*.'= o(?)((w(( - cr*(r)w.i*(r))  (3.10) 

where llwll= (2, w:)"* and update the weights according to the rule 

w,+w,+e*'u*(r ) i r ( r ) .  (3.11) 

For q =0, equation (3.11) is equivalent to equation (2.5). The convergence of the 
algorithm may be established using a straightforward extension of Gardner's proof for 
fixed points [ 101. Assume that a solution w* exists such that for each /.t = 1 , .  . . , p and 
r = l , .  . . , R, 

(3.12) 

where 8, q > 0. Let d"' be the set of weights after n iterations of the leaming algorithm 
and define X'"' by 

u*(r)w* * i p ( r ) >  (S + q)llw*(l 

(3.13) 

Using equations (3.10)-(3.12) and the Schwartz inequality, it may be shown that X'"' 
satisfies [ 101 

(3.14) 

It follows from (3.14) that, in order for the upper bound of X'"' not to be violated, 
the algorithm must terminate in less than n. time steps where nJlog n. = N/[26( 7 + S)]. 
Hence, the leaming rule (3.11) is guaranteed to find a solution to equation (3.9) if at 
least one such solution exists. 

As in the case of the standard perceptron [lo], statistical-mechanical techniques 
may be used to analyse the performance of a two-layer, time-summating network in 
the thermodynamic limit [11,12,14]. One of the features that emerges from such 
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analyses is the non-trivial contribution from intrinsic temporal correlations, as charac- 
terized by the matrix D of equation (3.4). For example, consider the problem of learning 
n N  mappings { S e ( [ ) ;  f = l , . . _ ,  R ) + { u + ( t ) ,  t = l ,  ..., R } ,  where St(r)=*l with 
equal probability and similarly for u * ( r ) .  Assuming that k, = k and the weights are 
normalized such that (Xjj,i w;)'/'= N,  the maximum number nY'(7) of sequences that 
may be leamed without error satisfies [12] 

(3.15) 

where (. . .), indicates averaging over the random output sequences {u( l ) ,  . . . , o ( R ) ) ,  
9 t  is the integration measure 

dt, at= n -exp ,=, JSJ;; (3.16) 

and D is the matrix of equation (3.4); the elements of D determine the k-dependence 
of the optimal capacity. The first summation on the right-hand side of equation (3.15) 
is over all subsets Ic{ l ,  ..., R )  and the I I l x l I  matrix D'" is defined by D"'= 
[(D,s)l,,sG,]-'. The function O , ( t )  restricts the integration over t to the domain 1, -7 
for all r c I  and t,<-q otherwise, i.e. ~ , ( f ) = ~ , ~ , ~ ( f , + 7 ) ~ , . ~ , ~ ( - t , , - v ) .  

When k = 0, the network is identical to a standard perceptron and, as expected, 
the optimal capacity is ap'(7)  = nc(v) /R,  where 

(3.17) 

is the standard result for a perceptron [lo], with n,(7) a monotonically decreasing 
function of 7 such that a,(O) = 2 / R .  A more interesting result is that [ 111, for 7 = 0, 
the maximum capacity is independent of the decay parameter k with @(O) = 2/R 
On the other hand, for 7 > 0, ukk'(7) is a monotonically decreasing function of k so 
that aik'(9) < a , ( v ) / R .  We conclude from this that the only effect of time-summating 
neurons, in the case of random, unbiased sequences, is to alter the effective size of the 
stability parameter 7, leading to a smaller capacity and an enhanced robustness to 
noise. This result is consistent with the fact that the random input and output sequences 
are simple, in the sense that the probability of a pattern occumng more than once in 
the set of sequences approaches zero in the thermodynamic limit (see also section 4). 
Thus, the sort of temporal problems that require the presence of time-summating 
neurons (section 2) do not arise. 

Another interesting example concerns the performance of a network when trained 
on noisy input sequences. Associate with each of the random sequences {S'(t); 
t = 1 , .  . . , R} a set of noisy sequences that are generated according to the independent 
probabilities 

(3.18) Pr[S, (r )  = S:(r ) ]  = ( 1  * m ) / 2 .  
For large N, the probability of error is given by 

(3.19) 

where a = m 2 / (  1 - m2);  the derivation of equation (3.19) proceeds along similar lines 
to that of equation (3.7). Suppose that the network is trained by using equation (3.18) 
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to generate, for each @, P example sequences {SILi(r), r = 1,. . . , R} and searching for 
a set of weights such that these noisy sequences are correctly classified, 

u*(r )w .  Sei(r) > 0. (3.20) 
(This is analogous to the perceptron classification problem for static pattems that was 
considered in [HI.) Define the average probability of error by 

E(r)=(([ 4 r )ddw)) )  (3.21) 

where ((. . .)) indicates averaging over the distributions of input and output pattems, 
and the measure 
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(3.22) 

determines the fractional volume in weight space of solutions to equation (3.20). For 
large P, E(r) satisfies 

E ( r )  = H(& A ( r ) / a )  (3.23) 
where A(r) is the typical local field generated by the sequences {S"(r), r = 1,. . . , R} 
at time r. i n e  average probabiiity of error has a compiicated dependence upon the 
decay parameter k For, in addition to the explicit scale factor l / a ,  A ( r )  is an 
implicit function of off-diagonal elements of D. In particular, the maximum number 
of examples P, that may be classified without error, for fixed a, and the corresponding 
local field AJr) satisfy the saddlepoint equations of the free energy of the system at 
the critical point [ 141, 

(3.24) 

where @ ' ( t ) = ~ , ~ l e ( t , - & A ( r ) ) I I , . ~ l  O(&A(r')- t , . )  and Ot satisfies equation 
(3.16). It may be shown that the associated error E ( r )  at the critical point is a 
monotonically increasing function of k, whereas P, decreases with k (A more detailed 
analysis will be presented elsewhere [14].) 

4. Storage and retrieval of temporal sequences 

In sections 2 and 3 we studied the associative learning of temporal sequences in 
feedforward networks. Another important issue is the storage and retrieval of temporal 
sequences and, in particular, the generation of a sequence of pattems given only the 
first few elements of the sequence. One of the most direct ways to store (periodic) 
binary sequences is to use an autoassociative network. Consider, for example, a fully 
connected network of N binary-tnresboid neurons and denoie ihe ouipui of iiis iih 
neuron at time f by S,( t )=+l .  The dynamics of the network is described by the 
equations (assuming synchronous update) 
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where W? is the connection from neuron j to neuron i and hi is the threshold (which 
we shall set to zero for convenience). Since the total number of possible states of the 
network is finite (equal to 2”), the dynamics of equation (4.1) is recurrent in the sense 
that the system returns to a state previously visited within a finite number of time steps. 
It follows that the long-term dynamics, in the absence of noise, is cyclic. 

However, there are a number of problems with the above implementation: (a)  The 
network can only store sequences in which there are no repeated states within a single 
cycle (simple sequences). Complex sequences, on the other hand, contain repeated 
states, which results in an ambiguity as to the successor of each of these states. (This 
is illustrated in figure 4.) The disambiguation of these sequences requires some form 
of memory extending over several time steps of a sequence. (b) Although systematic 
learning algorithms for the storage of temporal sequences in binary networks have 
been developed (e.g. see [16]), they tend to be rather cumbersome; hence the weights 
are often ‘sculpted by hand.  (e) The network spends a single time step in each of the 
states of the sequence. Hence, there is no natural distinction between cycle states and 
transient states, which suggests that the entire repeated cycle should be considered as 
a single cognitive event rather than as a sequence of events. 

ABCD ABCAD 

Figore 4. Example of a simple sequence ABCD..  . and a complex sequencc ABCAD.. . . 
In the latter case then is an ambiguity concerning the successor of pattern A. 

Problem (e) has motivated a different approach to temporal sequence storage based 
upon the framework of attractor networks [17]. A standard method for storing static 
patterns is to use a Hopfield network [18]. This is a binary network in which the 
dynamics is asynchronous; at each time step a single neuron i is chosen at random 
and its state updated according to equation (4.1). If the weights are symmetric, wy = wji, 
then there exists a Liapunov or energy function E which decreases along trajectories 
[18], with E = -Zj  w,S,SJ2 (for zero thresholds hi) .  Thus, the network converges to a 
stable fixed point corresponding to one of the minima of E. Aset of p random unbiased 
patterns {cy, i = 1 , .  . . , N } ,  p = 1,. . . , p may be stored by taking the connection weights 
to he of the Hebbian form [18!, 

so that each of the vectors e* becomes a fixed point of the dynamics (assuming that 
the effects of cross-talk are negligible). Pattern 6’ is recalled whenever the initial state 
of the network, S(O), lies within its particular basin of attraction. 

The extension of attractor networks to the case of temporai sequence storage 
essentially involves the introduction of an antisymmetric contribution to the connection 
weights so that equation (4.2) becomes [8] 

(4.3) 
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The effect of the first term on the right-hand side of equation (4.3), denoted wtl, is to 
stabilize the pattern currently activated, whereas the second term, .‘,“I, induces transi- 
tions from one pattern to the next along the sequence (of length 4). (The persistence 
or stabilization of each pattern of a stored sequence provides the mechanism for 
distinguishing between these patterns and transient states.) However, as it stands, such 
a strategy is too sensitive to the choice of value for A; if A is too small then the patterns 
remain completely stable, whereas if A is too large then transitions occur too quickly. 
This problem may be avoided by taking the asymmetric weights w$‘I to have a slow 
dynamic response so that the activation state of the ith neuron at time t is given by 

P C Bressloff and I G Taylor 

V , ( t ) =  x W‘,”S;( t )+ 1 w‘,“) dt’C(t-t’)S;(t’). (4.4) 
j # i  j # i  r 

More elaborate versions of such networks, which allow the storage of complex sequen- 
ces, have also been developed [19]. It is interesting to note that equation (4.4) contains 
a sum over previous input activity that is similar in form to the expression for the 
activation state of the two-layer time-summating network, equation (2.2). Indeed, the 
two are equivalent if we set 

C ( t  - 1‘ )  = S ( t  - t ’ -  r)k‘-’. (4.5) 
r = 1  

One of the limitations of the above attractor networks is that the Hebbian-like 
learning rules adopted are suboptimal even for problems which are effectively linearly 
separable. A simple illustration of this is the result that, in the case of random, unbiased 
pattems, the storage capacity for the Hopfield model is p =0.14N [I71 whereas the 
maximum possible storage capacity is 2 N  [ 10,201; in order to realize the optimal 
capacity it is necessary to use some form of perceptron-like learning algorithm [IO]. 
Similarly, the requirement that each pattern of a sequence should be stabilized implies 
that the capacity for storage of sequences of random pattems in an attractor network 
has an upper bound of 0.14N/R, where R is the sequence length. Therefore, we shall 
consider an alternative approach to the storage and retrieval of temporal sequences 
which uses, with some modifications, the perceptron leaming rule for a two-layer 
time-summating network analysed in sections 2 and 3. (An earlier version of this 
approach was presented in [7].) 

A schematic diagram of the learning phase is shown in figure 5.  The input layer 
consists of N time-summating neurons with a linear output function and the output 
layer consists of N binary-threshold neurons. All neurons in the input layer are 

I *(g I 
Sit+,) 

Figure 5. Schematic diagram of the learning phase of a two-layer time-summating network 
being trained to store a temporal sequence (S(l) ,  I =O,.  . . , R}. 
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connected to all neurons of the output layer. (This corresponds to the condition that 
an attractor network is fully connected.) Given an input sequence { S ( t ) ,  I = 0,. . . , R } ,  
the output of the ith neuron in the output layer at time t is 

(4.6) 

The network stores the sequence {S( t ) ,  t = 0 , .  , . , R} by learning to output the pattem 
S(t+ 1) on presentation of the patterns {S(O), . . . , S(  t ) } ,  for t = 0,. . . , R - 1. This may 
be achieved using a perceptron learning rule of the form (2 .5) ,  with the desired output 
at time t equal to the next pattern of the input sequence S(t+l): 

W#+ w,+(sj(t+l)-oj(r)).$(t) . $ ( t ) =  kj-rS,(r). (4.7) 
r=o 

The recall phase consists of feeding the output of the network back to the input layer. 
If the network is seeded with the first pattern of the sequence, then the full sequence 
will be generated (see figure 6). Note that the inclusion of time-summating neurons 
in the input layer allows the disambiguation of complex sequences due to the presence 
of an activity trace over previous inputs. Also note that, in this particular scheme, each 
sequence is uniquely labelled by the first pattern of the sequence. Thus, one cannot 
simultaneously store the sequences AAB and AAC, say. However, it is a simple matter 
to extend the system such that sequences are recalled by seeding the network with the 
first q pattems of each sequence. 

n 

Figure 6. Recall of a temporal sequcncc by a two-layer time-summating network. 

A convenient way to view the network of figures 5 and 6 is in terms of a set of N 
independent time-summating perceptrons, since the results of sections 2 and 3 may 
then be applied. Suppose that the network is required to store p pattem sequences 
{SIL(t), t =0,1,. . . , R } .  For each such sequence the ith perceptron must learn the R 
mappings, & ( t )  + St ( t+  l), t =0, , . . , R - 1. Following section 2, we divide the Rp 
inputs S'( I) into two sets F: and F; where SIL( 1 )  E F: if S,( t +  1) = 1 and SIL( t ) ~  F; 
otherwise. Temporal sequence storage then reduces to the problem of finding a set of 
weights { w ~ ,  j # i} such that the sets F; and FT are separated for each i = 1,. . . , N 
(cf equation (2.4)). By the perceptron convergence theorem, the learning algorithm 
(4.7) will find one such solution if it exists. In other words, the network is optimal 
with regards the storage of simple and complex sequences, provided that the corres- 
ponding sets F: and F;  are linearly separable. Note, however, that if F: and F; are 
not linearly separable then it is necessary to introduce one or more hidden layers. 
Although the network may be trained using back-error-propagation [4], there is no 
longer any guarantee of convergence, so that the learning may not be optimal. 
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A simple example of a linearly separable problem is the storage of the two pattem 
sequences AAB and BBA where A' = (1, -1) and B' = (-1.1). The corresponding sets 
F: and F; associated with the first output neuron are shown in figure 7. We see that 
these sets are linearly separable provided that the decay rates of the two input neurons 
are different, k # k'. (A similar result holds for the sets F: and F;.) This example also 
illustrates how the time-summating network of figure 5 can store a complex sequence. 

z+ .' , ltk 
-1 I\ 

-1-k \ o  

Figure 7. The sets F: and F; corresponding to the sequences A A B  and BBA where 
A'=(I,-I)  and B'=(-I ,I) .  

As in section 3, we may extend the perceptron algorithm (4.7) to the case of a 
non-zero stability parameter q to ensure a certain degree of robustness. In order that 
the network can store the set of sequences {S*( 1) .  t = 0, . . . , R } ,  /I = 1, . . . , p, we require 
that the weights wq satisfy the conditions (cf equation (3.9)) 

The learning rule corresponding to equation (3.10) is 
Wq' wq+ eySY(t+ I)S?(I) 

where 
(4.9) 

(4.10) 

The convergence of equation (4.9) then follows from section 3, since the network may 
once again be considered as a set of N independent time-summating perceptrons 
labelled by the site index i = 1,. . . , N. Similarly, the maximum storage capacity of the 
network in the thermodynamic limit is given by equation (3.15). In particular, for 
q =0, the storage capacity is 2NIR. 

Note that the analysis of optimal storage capacity simplifies considerably for a 
sparsely connected network in which the number of connections between the output 
layer and each neuron in the input layer is O(log N) [ll]. For this network, the 
contribution from off-diagonal elements of D may be neglected and the capacity 
increases, rather than decreases, as a function of k when q # 0. That is, equation (3.15) 
reduces to the much simpler expression 

The inequality in equation (4.11) follows from the fact that a.(?) is a monotonically 
decreasing function of q, and D,,> 1. Hence, for a sparsely connected network, 
increasing k reduces the effective size of q. 
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The optimal storage capacity for temporal sequences has also been studied by 
Bauer and Krey using a Gardner-type analysis [21]. However, their mechanism for 
storing temporal sequences is based on a distribution of synaptic delays, rather than 
a slowly decaying activation state, and there is little overlap with the present work. In 
1211 the constraints analogous to (4.8) are 

where rU is the synaptic delay associated with connection (i, j). Moreover, each pattern 
of a sequence is required to persist for a number of time steps A. The main consideration 
in [21] is the effect of different choices of T~ on the optimal storage capacity. 

One possible disadvantage of our scheme for storing and retrieving temporal 
sequences (figures 5 and 6) is that there is no intrinsic mechanism for distinguishing 
between pattems corresponding to stored sequences and arbitrary patterns (cf problem 
(c) discussed at the beginning of section 4). Therefore, one might need to supplement 
the network with some form of novelty detector. Finally, note that it is possible to 
combine the various approaches discussed in this section by taking the output layer 
of figure 5 to be an attractor network [22]. In this particular scheme a pattern from 
the time-summating input layer sets the initial state of the output layer; the neurons 
of the output layer then relax to some fixed point corresponding to a stored pattern, 
which is subsequently fed back to the input layer, and the whole process repeated. 
There are two distinct sets of weights; the interlayer connections encode transitions 
between one pattern and the next within a sequence, whereas the intralayer connections 
stabilize the patterns which constitute the various sequences. The presence of time- 
summating neurons in the input layer, with the possible addition of one or more hidden 
layers, allows complex sequences to be stored. Note, however, that careful account 
would need to be taken of the various timescales of the system. (We hope to explore 
this further elsewhere.) 

5. Discussion 

In this paper we have shown how a two-layer time-summating neural network may be 
trained to associate and store temporal sequences using perceptron-like learning 
algorithms. The presence of the time-summating input layer enables the network to 
handle temporal features such as ordering and coarticulation effects and to disambigu- 
ate complex sequences. However, the effects of intrinsic temporal correlations and the 
possible accumulation of errors must be carefully taken into account when analysing 
the performance of such networks. There are number of extensions of this work: 

(i) The development of learning algorithms that determine the decay rates k, as 
well as the weights between the input and output layers. Since the /c,s may be viewed 
as weights associated with additional feedback lines, they may be determined by a 
straightforward extension of back-error-propagation [23]. 

a time-summating network with a range of decay rates k, and complex input sequences. 
(Recall that the random sequences considered in section 3 are simple, since the 
probability of a repeated pattern occurring within a finite sequence approaches zero 
in the thermodynamic limit.) 

(::I TI.- -P o+d:&--l  ---h--:-ol +-rhninl..=l h a-911Tc.= thn m4&-sl ranal:t.. -P I.,, .,IC " IC  "1 ~ , ~ , ' O I . ~ ~ L I _ L , L I I ~ , ~ , ~ ~ I Y ~  L I 1 .  .... y"..m L" Y..U.J"I ...- w 11.. v... ....p...,,J Y. 
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(iii) The analysis of the storage and classification of temporal sequences in a 
three-layer neural network with a time-summating hidden layer. This would involve a 
number of features. First, the generalization of the geometric approach based on linear 
separability which was used to investigate ordering and coarticulation effects in section 
2. Second, the application of statistical-mechanical techniques recently developed for 
standard multilayer networks [24]. 
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